Tabelle t-Verteilung

Der Unterschied der t-Verteilung zur Standardnormalverteilung ist, dass es viele verschiedene t-Verteilungen gibt - eine für jeden Freiheitsgrad df.

Daher findet man in Büchern und Klausuren nie eine seitenlange Auflistung von je einer vollständigen Verteilungstabelle für jeden Freiheitsgrad, sondern nur die wichtigsten Quantile in einer Spalte.

Klausuraufgaben

Dabei bedeuten die folgenden Aussagen alle genau das selbe:

  • 2,5% der Fläche der Dichte der t-Verteilung mit 4 Freiheitsgraden (ab jetzt t(4)-Verteilung genannt) liegen rechts von 2,776.
  • 2,5% der Fläche der Dichte der t(4)-Verteilung liegen links von -2,776.
  • 95% der Fläche der Dichte der t(4)-Verteilung liegen im Intervall [-2,776; 2,776].
  • Eine t(4)-verteilte Zufallsvariable wird mit 95% Wahrscheinlichkeit im Intervall [-2,776; 2,776] liegen.
  • Das 97,5%-Quantil der t(4)-Verteilung ist 2,776.

Die folgende Grafik visualisiert diese 2,776. Versuche, den Wert in der unten stehenden Verteilungstabelle wiederzufinden!

a

So interpretiert man die aus der Verteilungstabelle abgelesenen Quantile.

Wenn man versteht, dass all diese Sätze äquivalent sind, dann kann man gut mit der Verteilungstabelle umgehen. Die Zeit dafür zu investieren, zahlt sich in der Klausur mit Sicherheit aus.

Anzahl Freiheitsgrade (df) Entsprechende Irrtumswahrscheinlichkeit \alpha bei zweiseitigem Test
0,5 0,25 0,2 0,1 0,05 0,02 0,01 0,002
Quantil der t-Verteilung
0,75 0,875 0,90 0,95 0,975 0,99 0,995 0,999
1 1,000 2,414 3,078 6,314 12,706 31,821 63,657 318,309
2 0,816 1,604 1,886 2,920 4,303 6,965 9,925 22,327
3 0,765 1,423 1,638 2,353 3,182 4,541 5,841 10,215
4 0,741 1,344 1,533 2,132 2,776 3,747 4,604 7,173
5 0,727 1,301 1,476 2,015 2,571 3,365 4,032 5,893
6 0,718 1,273 1,440 1,943 2,447 3,143 3,707 5,208
7 0,711 1,254 1,415 1,895 2,365 2,998 3,499 4,785
8 0,706 1,240 1,397 1,860 2,306 2,896 3,355 4,501
9 0,703 1,230 1,383 1,833 2,262 2,821 3,250 4,297
10 0,700 1,221 1,372 1,812 2,228 2,764 3,169 4,144
11 0,697 1,214 1,363 1,796 2,201 2,718 3,106 4,025
12 0,695 1,209 1,356 1,782 2,179 2,681 3,055 3,930
13 0,694 1,204 1,350 1,771 2,160 2,650 3,012 3,852
14 0,692 1,200 1,345 1,761 2,145 2,624 2,977 3,787
15 0,691 1,197 1,341 1,753 2,131 2,602 2,947 3,733
16 0,690 1,194 1,337 1,746 2,120 2,583 2,921 3,686
17 0,689 1,191 1,333 1,740 2,110 2,567 2,898 3,646
18 0,688 1,189 1,330 1,734 2,101 2,552 2,878 3,610
19 0,688 1,187 1,328 1,729 2,093 2,539 2,861 3,579
20 0,687 1,185 1,325 1,725 2,086 2,528 2,845 3,552
21 0,686 1,183 1,323 1,721 2,080 2,518 2,831 3,527
22 0,686 1,182 1,321 1,717 2,074 2,508 2,819 3,505
23 0,685 1,180 1,319 1,714 2,069 2,500 2,807 3,485
24 0,685 1,179 1,318 1,711 2,064 2,492 2,797 3,467
25 0,684 1,178 1,316 1,708 2,060 2,485 2,787 3,450
26 0,684 1,177 1,315 1,706 2,056 2,479 2,779 3,435
27 0,684 1,176 1,314 1,703 2,052 2,473 2,771 3,421
28 0,683 1,175 1,313 1,701 2,048 2,467 2,763 3,408
29 0,683 1,174 1,311 1,699 2,045 2,462 2,756 3,396
30 0,683 1,173 1,310 1,697 2,042 2,457 2,750 3,385
40 0,681 1,167 1,303 1,684 2,021 2,423 2,704 3,307
50 0,679 1,164 1,299 1,676 2,009 2,403 2,678 3,261
\infty 0,674 1,150 1,282 1,645 1,960 2,326 2,576 3,090

Schreibe einen Kommentar

Deine E-Mail-Adresse wird nicht veröffentlicht. Erforderliche Felder sind mit * markiert.