Konfidenzintervall für den Erwartungswert

Das KI für den Erwartungswert folgt einem ähnlichen Prinzip wie das bereits besprochene KI für einen Anteilswert:

\[ \text{Parameter} \pm \text{Quantil} \cdot \sqrt{\frac{\text{Varianz}}{n}} \]

In den meisten Fällen in der Realität ist die wahre Varianz nicht bekannt, und wird auch einfach aus der Stichprobe geschätzt. In einer Klausur wird der Fall, dass die Varianz \(\sigma^2\) bekannt ist, allerdings noch gefordert – daher betrachten wir ihn hier extra.

Klausuraufgaben
Im eBook-Shop gibt es Klausuraufgaben zu diesem Thema!
Zu den eBooks

Die Formeln für die Konfidenzintervalle der beiden Varianten unterscheiden sich nur minimal:

  • Wenn die wahre Varianz \(\sigma^2\) bekannt ist, nehmen wir in der Formel direkt die wahre Varianz \(\sigma^2\) – anderenfalls schätzen wir sie durch die Stichprobenvarianz \(s^2\) und nehmen diesen Wert.
  • Wenn die wahre Varianz \(\sigma^2\) bekannt ist, dann nehmen wir das Quantil der Normalverteilung – anderenfalls nehmen wir das Quantil der t-Verteilung mit \(n-1\) Freiheitsgraden.
    • Wenn wir allerdings eine ausreichend große Stichprobe haben, z.B. \(n>30\), dann können wir doch wieder das Quantil der Normalverteilung verwenden.

Sehen wir uns die Formeln der beiden KIs also an:

KI für den Erwartungswert \(\mu\), falls Varianz \(\sigma^2\) bekannt

Für das Konfidenzintervall brauchen wir die folgenden Werte:

  • Die Stichprobengröße \(n\)
  • Den Mittelwert der Stichprobe \(\bar{x}\)
  • Die wahre Varianz \(\sigma^2\)
    • In der Formel brauchen wir allerdings ihre Wurzel, die Standardabweichung, also \(\sigma\). Diese beiden Werte zu verwechseln, ist ein häufiger Fehler in der Klausur.
  • Die gewünschte Irrtumswahrscheinlichkeit \(\alpha\)
    • Damit berechnen wir das passende \(1-\frac{\alpha}{2}\)-Quantil der Normalverteilung, das wir in der Formel brauchen – also den Wert \(z_{1-\frac{\alpha}{2}}\). Für eine gewünschte Irrtumswahrscheinlichkeit von 5% brauchen wir also später das 97,5%-Quantil (das ist 1.96, wer es nachprüfen möchte).

Die untere Grenze des Intervalls ist dann:

\[ u = \bar{x} – z_{1-\frac{\alpha}{2}} \cdot \frac{\sigma}{\sqrt{n}}\]

Für die obere Grenze ersetzen wir einfach das erste Minus durch ein Plus:

\[ o = \bar{x} + z_{1-\frac{\alpha}{2}} \cdot \frac{\sigma}{\sqrt{n}}\]

Insgesamt lautet das Konfidenzintervall also

\[ \left[ \bar{x} – z_{1-\frac{\alpha}{2}} \cdot \frac{\sigma}{\sqrt{n}}, \, \, \bar{x} + z_{1-\frac{\alpha}{2}} \cdot \frac{\sigma}{\sqrt{n}} \right] \]

Oder, in Kurzschreibweise mit dem \(\pm\) Zeichen:

\[ \bar{x} \pm z_{1-\frac{\alpha}{2}} \cdot \frac{\sigma}{\sqrt{n}}\]

Beispielaufgabe

Der Intelligenzquotient (IQ) ist so erstellt worden, dass er in der Gesamtbevölkerung normalverteilt ist mit einem Mittelwert von 100 und einer Standardabweichung von 15 (d.h. einer Varianz von \(15^2 = 225\). Wir haben nun eine Stichprobe von \(n=35\) Social-Media-Powerusern, die täglich mehr als 3 Stunden in sozialen Netzen unterwegs sind. Ich erspare euch die „Rohdaten“, d.h. die einzelnen 35 IQs, und liefere direkt den Mittelwert der Stichprobe:

  • \(\bar{x} = 93.523\)

Wir können die Varianz in der Gruppe als bekannt annehmen, nämlich als \(\sigma^2 = 225\). Berechne nun ein 95%-Konfidenzintervall (d.h. \(\alpha=0.05\)) für den mittleren IQ in der Grundgesamtheit aller Social-Media-Poweruser.


Die Formel dafür kennen wir:

\[ \bar{x} \pm z_{1-\frac{\alpha}{2}} \cdot \frac{\sigma}{\sqrt{n}}\]

Dort tragen wir jetzt einfach alle geforderten Werte nacheinander ein. Manche müssen wir berechnen, andere aus einer Tabelle ablesen, und wieder andere einfach einsetzen:

  • \(\bar{x} = 93.523\), das steht in der Aufgabe
  • \(\alpha = 0.05\), denn da wir ein 95%-KI brauchen, ist die Irrtumswahrscheinlichkeit 5%, also 0.05.
  • \(z_{1-\frac{\alpha}{2}}\) ist \(z_{0.975}\), also das 97,5%-Quantil der Normalverteilung. Aus der Verteilungstabelle lesen wir ab, dass das 1.96 ist.
  • \(\sigma\) ist die Standardabweichung (Vorsicht: Die Wurzel aus der Varianz! Nicht verwechseln!). Bei uns ist \(\sigma = \sqrt{\sigma^2} = \sqrt{225} = 15\)
  • \(\sqrt{n} = \sqrt{35} = 5.916\)

Damit können wir das Intervall berechnen:

\[ 93.523 \pm 1.96 \cdot \frac{15}{5.916}\]

Das gesuchte Konfidenzintervall ist also \( 93.523 \pm 4.97\), also als Intervall geschrieben \([88.553, 98.493]\). Der mittlere IQ unter Social-Media-Powerusern liegt also wahrscheinlich in diesem Bereich.

KI für den Erwartungswert \(\mu\), falls Varianz \(\sigma^2\) unbekannt

Wie bereits erwähnt: Das Prinzip ist hier dasselbe, das KI wird berechnet durch

\[ \text{Parameter} \pm \text{Quantil} \cdot \sqrt{\frac{\text{Varianz}}{n}} \]

Die einzigen beiden Unterschiede sind, dass statt dem \(z\)-Quantil der Normalverteilung nun das der t-Verteilung verwendet wird, und dass nicht mehr die wahre Standardabweichung \(\sigma\) verwendet wird (da sie ja jetzt unbekannt ist), sondern die Stichprobenvarianz \(s^2\), bzw. ihre Wurzel \(s\) verwendet wird. Diese berechnen wir auf die bekannte Art und Weise: \(s^2 = \frac{1}{n-1} \sum_{i=1}^n (x_i-\bar{x})^2\).

Die Formel für das Konfidenzintervall ist von der Bedeutung her identisch mit dem Fall, wenn die wahre Varianz \(\sigma^2\) bekannt ist, nur mit den oben besprochenen Unterschieden:

\[ \bar{x} \pm t_{1-\frac{\alpha}{2}}(n-1) \cdot \frac{s}{\sqrt{n}}\]

Die Bezeichnung \(t_{1-\frac{\alpha}{2}}(n-1)\) sieht vielleicht etwas furchteinflößend aus, aber sie ist ganz einfach das \(1-\frac{\alpha}{2}\)-Quantil der t-Verteilung mit \(n-1\) Freiheitsgraden – das ist am Ende nur eine harmlose Dezimalzahl. Ihren Wert findet man in der Tabelle der t-Verteilung.

Anmerkung: Falls die Stichprobe mehr als 30 Beobachtungen hat, kann man im Normalfall doch wieder das \(z\)-Quantil der Normalverteilung (statt dem Quantil der t-Verteilung) verwenden.

Beispielaufgabe

Wir interessieren uns für den mittleren Intelligenzquotienten (IQ) in einer Förderschule für Hochbegabte. In der breiten Bevölkerung ist zwar bekannt, dass der IQ normalverteilt ist mit \(\mu=100\) und \(\sigma^2=225\), aber in dieser Untergruppe kann man weder vom selben Mittelwert noch von derselben Varianz ausgehen. Wir erheben also durch einen IQ-Test die Zahlen für eine Stichprobe von \(n=22\) Hochbegabten, und erhalten:

  • \(\bar{x} = 134.32\)
  • \(s^2 = 98.83\)

Berechne nun ein 95%-Konfidenzintervall für den mittleren IQ von Hochbegabten in Förderklassen.


Wir verwenden ganz einfach die Formel für das KI, und setzen alle Werte nacheinander ein:

\[ \bar{x} \pm t_{1-\frac{\alpha}{2}}(n-1) \cdot \frac{s}{\sqrt{n}}\]

Die Werte, die wir brauchen sind:

  • \(\bar{x} = 134.32\), das steht direkt im Aufgabentext
  • \(\alpha = 0.05\), denn da wir ein 95%-KI brauchen, ist die Irrtumswahrscheinlichkeit 5%, also 0.05.
  • \(t_{1-\frac{\alpha}{2}}(n-1)\) ist das \(1-\frac{\alpha}{2}\)-Quantil, also das 97,5%-Quantil der t-Verteilung mit \(n-1\), also mit 21 Freiheitsgraden. In der Verteilungstabelle lesen wir ab, dass dieser Wert \(t_{0.975}(21) = 2.080\) ist
  • \(s = \sqrt{s^2} = \sqrt{98.83} = 9.941\)
  • \(\sqrt{n} = \sqrt{22} = 4.69\)

Wir setzen also diese Werte ein und rechnen aus:

\[ 134.32 \pm 2.080 \cdot \frac{9.941}{4.69}\]

Das gesuchte Konfidenzintervall ist also \( 134.32 \pm 4.41\), also in Intervallschreibweise \([129.91, 138.73]\). Der IQ unter Förderschülern liegt also ziemlich wahrscheinlich in diesem Bereich.

8 Gedanken zu „Konfidenzintervall für den Erwartungswert

  1. Tibor Kausay

    Sehr geehrter Herr Alexander Engelhardt, meine Frage ist:
    Gibt es eine Regel, wann davon ausgegangen werden kann oder darf, dass die Varianz bekannt ist?
    Wann kann ich sicher sein (was braucht man dazu), dass ich die Varianz wirklich kenne, und mein Wissen auch von anderen außer mir akzeptiert wird.
    Die zu Beta = 0,95 Sicherheit gehörende Zufallsvariable muss mit einer anderen Formel berechnet werden, wenn die Varianz bekannt ist, und mit einer anderen Formel, wenn sie unbekannt ist. Zum Beispiel der Faktor „t“ in Student-Verteilung hängt davon.
    Ich wäre Dankbar für einen Rat in diese Frage.
    Mit freundlichen Grüßen, Tibor Kausay, Budapest

    Antworten
    1. Alex Beitragsautor

      Hallo Tibor,
      ich kenne keine Regel, nach der man davon ausgehen kann. In Aufgaben steht meistens drin, dass „man davon ausgehen kann, die Varianz ist bekannt und (z.B.) sigma = 0.5“.
      Ich denke, in der Realität kann man davon ausgehen dass sie bekannt ist, wenn man einen bestimmten Test regelmäßig, z.B. in der Qualitätskontrolle täglich rechnet, und immer dieselbe Varianz dafür verwendet.

      Normalerweise (z.B. in der Forschung) ist es aber so, dass die Varianz nie als bekannt genommen wird, sondern immer neu berechnet wird. Damit macht man eigentlich nie etwas falsches.
      Viele Grüße
      Alex

      Antworten
  2. Simon

    In der Aufgabenstellung von den hochbegabten steht: n=22. Wenn man die Formel mit s/wurzel(n) ausrechnet, kommen als Intervallgrenzen 138,7285 und 129,9114 heraus.

    Wenn man s/wurzel(n-1) einsetzt, dann kommen auch die Werte heraus, die als Lösung der Beispielaufgabe notiert sind.

    Was ist richtig? Wird durch die Wurzel (n), also die Wurzel der Stichprobenanzahl geteilt, oder wird durch die Wurzel(n-1), also durch die Anzahl der Freiheitsgrade geteilt?

    Antworten
    1. Alex Beitragsautor

      Hi Simon,
      du hast einen Fehler entdeckt. Mit n=22 ist es richtig, und mit den Grenzen 129.91 bis 138.73. Ich habe es im Artikel korrigiert.
      Vielen Dank für den Hinweis! 🙂
      VG
      Alex

      Antworten
  3. Tilman Busch

    Hallo bei mir in der Formelsammlung steht : x¯± (σx/√n) * z1−(α/2) falls die wahre Varianz bekannt ist.. was ist denn nun richtig?

    Antworten
  4. Esra

    In den Lösungen zu b) ist ein kleiner Fehler. Dort steht für n=22, in der Aufgabenstellung jedoch n=24.
    Dies führt natürlich nur zu minimalen Fehlern, jedoch könnte es den einen oder anderen verwirren.

    Antworten
    1. Alex Beitragsautor

      Hi Esra,
      vielen Dank für den Hinweis. Ich hab die Zahl in der Aufgabenstellung zu 22 korrigiert 🙂
      Viele Grüße
      Alex

      Antworten

Schreibe einen Kommentar

Deine E-Mail-Adresse wird nicht veröffentlicht. Erforderliche Felder sind mit * markiert

Diese Website verwendet Akismet, um Spam zu reduzieren. Erfahre mehr darüber, wie deine Kommentardaten verarbeitet werden.