Welchen statistischen Test soll ich wählen?

Dieser Artikel basiert auf dem allgemeinen Artikel zum Vorgehen bei Hypothesentests. Ich empfehle, diesen Artikel vorher zu lesen und zu verstehen; das macht den Lesefluss und das Verständnis dieses Artikels hier sehr viel einfacher.

Die Tabelle zur Testwahl

Die folgende Tabelle (klicke sie für ein größeres Bild) zeigt dir, welcher der geeignete Test für ein bestimmtes Skalenniveau der Ziel- und Einflussgrößen ist.

Die Erklärung dazu findest du im Rest dieses Artikels.

Übersicht über statistische Tests

Bestimme zuerst die Art deiner Zielgröße, danach die Art deiner Einflussgröße. In dieser Tabelle findest du dann die passende Methode zur Analyse deiner Daten.

Eine kurze Warnung: Für viele Situationen ist die Wahl des passenden Tests sehr einfach, und es gibt quasi nur eine Möglichkeit. In manchen Fällen gibt es aber auch mehrere passende Tests, die man anwenden könnte. Wenn es z.B. zwei mögliche Tests gibt, dann hat vielleicht einer den Vorteil, dass er weniger Annahmen an die Daten treffen muss (z.B. Normalverteilung), und der andere hätte dafür den Vorteil, dass er einen tatsächlich vorhandenen Effekt besser erkennen kann.

In dieser Tabelle habe ich Tests gesammelt, die für einen bestimmten Datensatz in meinen Augen entweder die einfachste, oder die beste Lösung sind – wichtig ist, im Hinterkopf zu behalten, dass das nicht heißt, andere Tests sind automatisch falsch oder schlechter.

Die Erklärung zur Tabelle

Es gibt eine ganze Menge an Testverfahren, die auf den ersten Blick gerne mal überwältigend sind. Welchen Test man in einer bestimmten Situation genau wählen muss, hängt von einigen Fragen ab, die in jeder Situation erneut beantwortet werden müssen.

Eine Google-Bildersuche für „which statistical test“ bzw. „welcher statistische test“ liefert viele verschiedene Diagramme, die unterschiedlich detailliert sind, und auch unterschiedlich beginnen. Manche sind zielorientiert, d.h. die erste Frage lautet „Was möchte ich erreichen?“, und die möglichen Ziele sind z.B. „Einen Mittelwert mit einem hypothetischen Wert vergleichen“. Andere Diagramme orientieren sich an den Eigenschaften der Daten. Hier beginnt man mit der Frage „Welcher Art ist die Zielgröße?“, ob sie z.B. nominal oder stetig ist. Das ist für den Anfang in meinen Augen leichter, weswegen wir uns diese zwei Fragen stellen:

1.) Welcher Art ist die Zielgröße?

Die Zielgröße ist das Merkmal, das sich durch die Wirkung von EInflussgrößen verändern wird. Sie ist abhängig von den Einflussgrößen. Möchte ich z.B. die blutdrucksenkende Wirkung eines neuen Medikaments nachweisen, dann ist meine Zielgröße der Blutdruck, und die Einflussgröße ist das Medikament (man hätte z.B. zwei Gruppen, einmal Personen ohne Medikament und einmal Personen mit Medikament).

Bestimme nun, von welcher Art (welches Skalenniveau) deine Zielgröße ist:

  1. Nominal? Das heißt, sie ist eine Kategorie mit zwei oder mehr möglichen Ausprägungen. Ein Beispiel wäre, dass man untersuchen möchte, welche Partei eine bestimmte Person wählen wird.
  2. Ordinal? Das ist der Fall, wenn man z.B. eine Fragebogenantwort mit den Werten „stimme nicht zu“ / „neutral“ / „stimme zu“ untersucht.
  3. Stetig und intervall- oder verhältnisskaliert? Stetige Zielgrößen sind z.B. das Einkommen einer Person, oder die Außentemperatur. Man kann hier oft auch Zähldaten mit aufnehmen, wenn die Skala „weit genug“ reicht. Zum Beispiel kann man „Anzahl der Anrufe in einer Telefonzentrale“ sehr gut verwenden, da es da wohl um größere und breit gestreute Zahlen geht, vielleicht 1000 bis 5000 Anrufe. Aber „Anzahl Autos in einem Haushalt“ wäre ein anderes Extrem, da die Antworten hier wohl meist im Bereich von 0 bis 2 liegen. Dann wäre es vielleicht sogar besser, die Zielgröße als ordinal zu betrachten.
  4. Normalverteilt? Eine stetige Zielgröße die (annähernd) durch eine Normalverteilung beschrieben werden kann. Das klassische Beispiel hierfür ist die Körpergröße einer Person. Eine normalverteilte Zielgröße ist von Vorteil, denn erstens macht das das Testverfahren oft ein bisschen einfacher als bei nicht-normalverteilten Daten, und zweitens können diese Tests einen tatsächlich vorhandenen Effekt schneller, d.h. mit einer geringeren Stichprobengröße, erkennen. Man sagt, diese Tests haben eine höhere Power (oder Güte).

2.) Wie sehen eventuelle Einflussgrößen aus?

Als zweites müssen wir bestimmen, ob wir überhaupt eine Einflussgröße haben, und wenn ja, welchen Skalentyp sie hat.

Wichtig: Bei den Einflussgrößen ist es egal, welche Verteilung sie haben. Ob also eine Einflussgröße normalverteilt ist oder nicht, ist für das Testverfahren egal.

  1. Keine Einflussgröße? Dann interessiert man sich meist dafür, ob in der Zielgröße die Häufigkeiten in den verschiedenen Ausprägungen eine bestimmte Verteilung (z.B. 50/50) haben.
  2. Eine stetige (evtl. ordinale) Einflussgröße, oder Zähldaten? Wie eben gesagt, es ist egal welche Verteilung die Einflussgröße dann hat. Alle stetigen Variablen oder Zähldaten fallen in diese Kategorie. Bei ordinalen Variablen kann man sich entweder für diese oder für die nächste Kategorie (ordinale oder kategoriale Einflussgrößen) entscheiden. Ganz korrekt wäre es, die nächste Gruppe dafür zu verwenden. Aber ordinale Variablen werden auch oft als stetig betrachtet, was die Analyse etwas leichter macht, aber technisch nicht ganz korrekt ist.
  3. Ordinale oder kategoriale Einflussgröße? Dann gibt es zwei Fallunterscheidungen zu beachten:
    1. Hat die Einflussgröße nur zwei mögliche Gruppen?
      1. Sind die beiden Gruppen gepaart (man sagt auch: verbunden)? Das ist meistens eine Vorher-Nachher-Untersuchung an denselben Objekten. Man befrägt z.B. eine Gruppe von Patienten vor der Medikamentengabe, und dann dieselben Patienten nochmal nach der Medikamentengabe. Die zwei Gruppen wären dann „vorher“ und „nachher“, aber es handelt sich jeweils um dieselben Patienten.
      2. Sind die beiden Gruppen unabhängig? Wenn z.B. eine Gruppe Handwerker und eine andere Gruppe Büroangestellte befragt werden, sind diese zwei Gruppen unabhängig.
    2. Hat die Einflussgröße mehrere mögliche Gruppen?
      1. Sind die Gruppen gepaart? Ein Beispiel für diese Situation wäre, wenn man einer Gruppe Patienten eine bestimmte Therapie gibt, und für dieselben Personen dann zu fünf verschiedenen Zeitpunkten („Gruppe“ 1 bis 5) dann medizinische Werte erhebt.
      2. Sind die Gruppen unabhängig? Das wäre z.B. der Fall bei der Einflussgröße „Automarke einer Person“.
  4. Gibt es mehrere Einflussgrößen? In diesem Fall ist egal, welcher Art sie sind. Es läuft zwangsläufig auf eine Regression hinaus, in der beliebige Kombinationen von Einflussgrößen untersucht werden können.

Schreibe einen Kommentar

Deine E-Mail-Adresse wird nicht veröffentlicht. Erforderliche Felder sind mit * markiert.

Diese Website verwendet Akismet, um Spam zu reduzieren. Erfahre mehr darüber, wie deine Kommentardaten verarbeitet werden.