Archiv der Kategorie: Induktive Statistik

Einfache lineare Regression

Klausuraufgaben
Im eBook-Shop gibt es Klausuraufgaben zu diesem Thema!
Zu den eBooks

In diesem Artikel wird nun – aufbauend auf das einführende Beispiel – beschrieben, wie man die Regressionsgerade für unsere Beispieldaten berechnet und einzeichnet. Zur Wiederholung:

Wir möchten die Ringgröße (\(y\)) unserer Freundin schätzen, um sie mit einem Ring zu überraschen. Wir wissen aber nur ihre Körpergröße (\(x\)). Um nun die Ringgröße zu schätzen, sammeln wir 10 Datenpunkte von Freunden und Bekannten, und notieren ihre Körpergröße und Ringgröße:

Person \(i\) 1 2 3 4 5 6 7 8 9 10
Körpergröße \(x\) 156.3 158.9 160.8 179.6 156.6 165.1 165.9 156.7 167.8 160.8
Ringgröße \(y\) 47.1 46.8 49.3 53.2 47.7 49.0 50.6 47.1 51.7 47.8

Wir nennen hier \(y\) die Zielgröße, da ihre Vorhersage unser Ziel ist. Die Körpergröße \(x\) wird allgemein auch Einflussgröße genannt. Es gibt aber noch unzählige andere Namen für die beiden Typen von Variablen. In anderen Quellen wird \(y\) auch häufig Zielvariable, Regressand, Outcome, erklärte Variable oder abhängige Variable (weil sie von \(x\) abhängig ist) genannt. Andere Namen für \(x\) sind Kovariable, Input, Regressor, erklärende Variable oder unabhängige Variable.

Diese Daten können wir nun in ein Streudiagramm einzeichnen, und erkennen sofort, dass größere Frauen tendenziell auch größere Ringe brauchen:

regression-motivation1

Die Regression ist nun eine statistische Methode, um die bestmögliche Gerade zu finden, die man durch diese Daten legen kann. Eine Gerade wird ja definiert durch zwei Parameter \(a\) und \(b\); man kann sie dann darstellen als

\[ y = a + b \cdot x \]

Manchmal sieht man übrigens statt \(a + b \cdot x\) auch \(\alpha + \beta \cdot x\) oder \(\beta_0 + \beta_1 \cdot x\), aber das sind nur andere Namen für dieselben Zahlen.

Berechnung der Parameter \(a\) und \(b\)

Wenn wir also die bestmögliche Gerade finden wollen, die wir durch diese Punktwolke an Daten legen können, ist das gleichbedeutend damit, dass wir die bestmöglichen Werte für \(a\) und \(b\) finden wollen. Und dafür wurden die folgenden beiden Formeln entdeckt:

\[ b = \frac{\sum_{i=1}^n (x_i – \bar{x}) \cdot (y_i – \bar{y})}{\sum_{i=1}^n (x_i – \bar{x})^2} \]

Die Formel für \(a\) ist einfacher, aber wir müssen vorher das Ergebnis für \(b\) berechnen und dort einsetzen:

\[ a = \bar{y} – b\cdot \bar{x} \]

Die Werte \(\bar{x}\) und \(\bar{y}\) sind jeweils die Mittelwerte der gemessenen Daten \(x\) und \(y\).

Eine kürzere Formel für die Berechnung von \(b\)

Die Formel für \(b\) ist recht chaotisch, aber es gibt eine Möglichkeit, sie kürzer darzustellen, während sie immernoch dasselbe Ergebnis liefert:

\[ b = r_{xy} \cdot \frac{s_y}{s_x} \]

Dabei ist \(r_{xy}\) die Pearson-Korrelation zwischen \(x\) und \(y\), und \(s_x\) und \(s_y\) jeweils die Standardabweichung von \(x\) bzw. \(y\). Diese Werte muss man natürlich auch erstmal ausrechnen, so dass diese kürzere Formel insgesamt wahrscheinlich mehr Rechenaufwand bedeutet – außer man hat diese Zwischenergebnisse schon z.B. in einer vorherigen Teilaufgabe der Klausur erhalten und kann sie einfach einsetzen.

Beispielaufgabe

Wir berechnen hier die Werte \(a\) und \(b\) für die obenstehende Tabelle von 10 Personen. Dazu brauchen wir die Mittelwerte von \(x\) und \(y\) als Zwischenergebnisse:

\[ \begin{align*} \bar{x} &= \frac{1}{10} \cdot (156.3+158.9+160.8+179.6+156.6+165.1+165.9+156.7+167.8+160.8) \\ &= \frac{1}{10} \cdot 1628.5 \\ &= 162.85 \end{align*} \]

Genauso erhält man dann auch

\[ \bar{y} = 49.03 \]

Zum Berechnen von \(b\) könnte man nun sofort loslegen, alles in den Taschenrechner einzutippen. Das ist aber anfällig für Leichtsinnsfehler, und oft reicht auch der Platz im Taschenrechner nicht für diese große Formel aus. Ich schlage also vor, in mehreren Schritten vorzugehen:

Bestimmen der Werte \((x_i-\bar{x})\) und \((y_i-\bar{y})\)

Zuerst brauchen wir Zwischenergebnisse, wo wir von jedem Wert den zugehörigen Mittelwert abziehen. Aus der Tabelle

Person \(i\) 1 2 3 4 5 6 7 8 9 10
Körpergröße \(x\) 156.3 158.9 160.8 179.6 156.6 165.1 165.9 156.7 167.8 160.8
Ringgröße \(y\) 47.1 46.8 49.3 53.2 47.7 49.0 50.6 47.1 51.7 47.8

werden also die folgenden Werte berechnet:

Person \(i\) 1 2 3 4 5 6 7 8 9 10
\((x_i-\bar{x})\) -6.55 -3.95 -2.05 16.75 -6.25 2.25 3.05 -6.15 4.95 -2.05
\((y_i-\bar{y})\) -1.93 -2.23 0.27 4.17 -1.33 -0.03 1.57 -1.93 2.67 -1.23

Als Beispiel: Der erste Wert für \((x_i-\bar{x})\) ist einfach \(156.3 – 162.85 = – 6.55\).

Berechnen von \(b\)

Jetzt sind wir nicht weit vom Ergebnis entfernt. Wir brauchen im Zähler der Formel für \(b\) nun für jede Person \(i\) das Produkt der beiden Werte \((x_i-\bar{x})\) und \((y_i-\bar{y})\), für die erste Person also z.B. \((-6.55 \cdot -1.93) = 12.6415\).

Im Nenner der Formel für \(b\) brauchen wir das Quadrat der zweiten Zeile, also wir müssen \((x_i-\bar{x})^2\) berechnen.

Diese Werte berechnen wir nun für alle 10 Personen und können sie (ich runde auf zwei Nachkommastellen) in zwei neue Zeilen der Tabelle einfügen:

Person \(i\) 1 2 3 4 5 6 7 8 9 10
\((x_i-\bar{x})\) -6.55 -3.95 -2.05 16.75 -6.25 2.25 3.05 -6.15 4.95 -2.05
\((y_i-\bar{y})\) -1.93 -2.23 0.27 4.17 -1.33 -0.03 1.57 -1.93 2.67 -1.23
\((x_i-\bar{x}) \cdot (y_i-\bar{y})\) 12.64 8.81 -0.55 69.85 8.31 -0.07 4.79 11.87 13.22 2.52
\((x_i-\bar{x})^2\) 42.90 15.60 4.20 280.56 39.06 5.06 9.30 37.82 24.50 4.20

Und wenn man sich jetzt nochmal die Formel für \(b\) anschaut, sieht man dass wir soweit sind: der Zähler ist die Summe der Werte in der dritten Zeile, und der Nenner die Summe der Werte in der vierten Zeile. Die ergeben sich zu

\[ \sum_{i=1}^n (x_i-\bar{x}) \cdot (y_i-\bar{y}) = 131.39 \]

und

\[ \sum_{i=1}^n (x_i-\bar{x})^2 = 463.2 \]

Somit können wir also \(b\) berechnen:

\[ b =\frac{\sum_{i=1}^n (x_i – \bar{x}) \cdot (y_i – \bar{y})}{\sum_{i=1}^n (x_i – \bar{x})^2} = \frac{131.39}{463.2} = 0.2836 \]

Berechnen von \(a\)

Der Wert \(a\) ist nun mit diesem Ergebnis ganz einfach zu erhalten:

\[ a = \bar{y} – b\cdot \bar{x} = 49.03 – 0.2836 \cdot 162.85 = 2.8457 \]

Einzeichnen der Regressionsgerade

Wir haben also nun die letztendliche Regressionsgerade berechnen können:

\[ y = 2.8457 + 0.2836 \cdot x \]

Um die Gerade dann einzuzeichnen, reicht es, zwei Punkte zu bestimmen, indem wir irgendwelche \(x\)-Werte aussuchen, und die zugehörigen \(y\)-Werte bestimmen. Die \(x\)-Werte sollten sich im Rahmen der „normalen“ Werte der Daten bewegen. Mit Hilfe der Grafik können wir z.B. \(x=160\) und \(x=170\) aussuchen. Dann berechnen wir mit der Formel der Regressionsgeraden die zugehörigen \(y\)-Werte:

\[ 2.8457 + 0.2836 \cdot 160 = 48.22 \]

\[ 2.8457 + 0.2836 \cdot 170 = 51.06 \]

Die Punkte \((160, 48.22)\) und \((170, 51.06)\) können wir nun in das Streudiagramm einzeichnen, und eine Gerade durch die beiden Punkte ziehen:

regression-gerade

Vorhersage bei der einfachen linearen Regression

Bisher haben wir gelernt, wie man die beiden Koeffizienten \(a\) und \(b\) berechnet. Jetzt möchten wir mit Hilfe der Parameter auch für neue Daten \(x\) vorhersagen, welchen Wert für \(y\) wir erwarten.

Das Ziel, das wir mit der Regression erreichen wollen, ist nämlich folgendes: Angenommen es kommt eine neue Person, von der wir nur die Körpergröße \(x=170\) wissen. Was ist dann der Erwartungswert der Ringgröße \(y\)? Wir suchen also \(\mathbb{E}(y|x)\), den bedingten Erwartungswert von \(y\), gegeben man kennt \(x\).

Bei der einfachen linearen Regression gibt es ja nur eine Einflussgröße \(x\). Die Regressionsgerade lautet also

\[ y = a + b\cdot x \]

Um eine Vorhersage für die Zielgröße \(y\) zu erhalten, müssen wir also einfach den zugehörigen Wert für \(x\) in die Gleichung einsetzen. Die Werte für \(a\) und \(b\) haben wir vorher schon berechnet.

Als Beispiel: Im Beispiel aus dem vorherigen Artikel haben wir die Werte \(a=2.8457\) und \(b=0.2836\) bestimmt. Welche Ringgröße ist nun bei deiner Freundin zu erwarten, wenn sie eine Körpergröße von \(x=\)170cm hat? Dafür berechnen wir:

\[ y = a + b\cdot x = 2.8457 + 0.2836 \cdot 170 = 51.06 \]

Ein Ring mit der Größe 51 sollte also gut bei ihr passen.

Es ist hier noch wichtig zu erwähnen, dass wir nur den Erwartungswert von \(y\) vorhersagen. Die Ringgröße wird also nicht exakt 51.06 sein, sondern es gibt immer einen kleinen Fehler, den man im linearen Modell \(\epsilon\) (sprich: Epsilon) nennt. In Wirklichkeit lautet die Regressionsgleichung also

\[ y = a + b \cdot x + \epsilon \]

wobei \(\epsilon\) einen zufälligen und unbekannten Fehler bezeichnet.

Dieser Fehler heißt meistens Residuum, aber man trifft ihn auch manchmal unter den Namen Fehlerterm oder Epsilon an.

Regression: Ein einführendes Beispiel

Idee der Regression

Das Ziel der Regression ist es, den Wert einer bestimmten Variablen anhand einer oder mehrerer bekannter Werte vorherzusagen.

Klausuraufgaben
Im eBook-Shop gibt es Klausuraufgaben zu diesem Thema!
Zu den eBooks

Beispiel

Du möchtest deiner Freundin einen Verlobungsring kaufen. Dummerweise kennst du aber ihre Ringgröße nicht. Es ist natürlich zu verdächtig, sie direkt zu fragen, weil sie dann Verdacht schöpfen könnte.

Du weißt aber, dass kleinere Frauen tendenziell auch kleinere Ringgrößen haben, und nach ihrer Körpergröße kannst du sie ohne Bedenken fragen. Sie ist 170cm groß. Was nun? Kannst du mit dieser Information dein Problem lösen?

Ja! Die lineare Regression hilft dir in dieser Situation!

Du befrägst deinen gesamten weiblichen Bekanntenkreis (10 Personen) nach ihrer Körpergröße und ihrer Ringgröße, und erhältst als Ergebnis die folgenden Daten:

regression-motivation1

Deine Tante Emma ist zum Beispiel \(x=\)165cm groß und trägt Ringgröße \(y=\)49. Sie wird durch den Punkt ca. in der Mitte links repräsentiert.

Das sieht hilfreich aus. Da deine Freundin 170cm groß ist (\(x\)-Achse), hat sie wohl in etwa eine Ringgröße von 52 (\(y\)-Achse). Du kaufst ihr einen Ring in dieser Größe, er passt, sie sagt Ja, und ihr seid glücklich bis an euer Lebensende.

Was hier passiert ist, ist dass du in deinem Kopf eine Regression durchgeführt hast, um mit Hilfe einer bekannten Variablen – ihrer Körpergröße – eine unbekannte Variable, nämlich ihre Ringgröße vorherzusagen.

Die Regression in der Statistik ist nun ein mathematisches Werkzeug, um eine exakte Regel zu bauen, mit der man für jede Körpergröße eine „beste“ Vorhersage für die Ringgröße erhält. In diesem Beispiel würde man also die „beste“ Gerade bestimmen, die durch den oberen Graphen geht:

regression-motivation2

Wie man diese Gerade berechnet, interpretiert, und mit ihr Vorhersagen macht, sehen wir dann in den nächsten Abschnitten. Das grundlegende Problem, und das Vorgehen bei der Lösung des Problems, ist aber genau dasselbe wie in diesem Beispiel beschrieben wurde.

Übersicht Inferenzstatistik / Induktive Statistik

Klausuraufgaben
Im eBook-Shop gibt es Klausuraufgaben zu diesem Thema!
Zu den eBooks

Bisher haben wir uns mit der deskriptiven (oder beschreibenden) Statistik, sowie mit der Wahrscheinlichkeitsrechnung beschäftigt:

  • In der deskriptiven Statistik haben wir eine Stichprobe, und beschreiben ihre Eigenschaften (z.B. Mittelwerte, Varianzen, oder Quantile in einem Boxplot). Wichtig hier: Wir beschreiben nur die Stichprobe. Es werden keine Aussagen über die Grundgesamtheit, aus der die Stichprobe kommt, getroffen.
  • In der Wahrscheinlichkeitsrechnung haben wir eine gegebene Verteilung inklusive aller ihrer Parameter, und möchten die Wahrscheinlichkeit bestimmen, mit der zukünftige Daten bestimmte Werte annehmen.

In der Inferenzstatistik (oft auch induktive oder schließende Statistik genannt) gehen wir nun genau andersrum wie in der Wahrscheinlichkeitsrechnung vor: Wir haben eine Stichprobe gegeben, und möchten mit ihrer Hilfe auf die Parameter der darunterliegenden Verteilung in der Grundgesamtheit schließen.

Die Inferenzstatistik verbindet also die vorhergehenden beiden Teile. Wir berechnen Kennzahlen der Stichprobe (deskriptiv), und schließen dann mit Hilfe der Wahrscheinlichkeitsrechnung auf Eigenschaften in der Grundgesamtheit.

a

In der Wahrscheinlichkeitsrechnung haben wir eine Verteilung gegeben und wollen die Wahrscheinlichkeit für gewisse Daten ausrechnen. In der Inferenzstatistik haben wir Daten gegeben und wollen deren Verteilung (hier: Eine Poissonverteilung mit Parameter \(\lambda=2\)) bestimmen.

Sowohl Hypothesentests als auch Regressionsmodelle kommen aus der Inferenzstatistik. Um in diesem Rahmen Inferenz zu betreiben, muss man zuerst eine den Daten unterliegende Verteilung annehmen. Dazu bedienen sich beide Verfahren statistischer Modelle.

Ein statistisches Modell ist eine (idealisierte) Annahme über das System (meistens: eine bestmmte Verteilung), das einen bestimmten Datensatz generiert hat. Unter der Annahme, dass die Stichprobe zufällig aus der Grundgesamtheit entnommen wurde, gilt dasselbe Modell dann für Stichprobe sowie Grundgesamtheit. Dadurch lässt sich Inferenzstatistik betreiben, und es lassen sich aus der Stichprobe Schlussfolgerungen über die Grundgesamtheit ziehen.

Wie gesagt: zwei große Teilgebiete der Inferenzstatistik sind in den einführenden Statistikveranstaltungen besonders wichtig:

  • Zum einen das Schätzen der genauen Parameter (wie z.B. den Wert \(\lambda=2\) in der oberen Grafik) bzw. Bereiche, in denen der Parameter höchstwahrscheinlich liegt (sogenannter Konfidenzintervalle)
  • Zum anderen das Testen, ob gewisse Parameter einen bestimmten, hypothetischen Wert annehmen.

Beim Schätzen haben wir also keine vorherige Meinung, was der Parameter sein könnte, und berechnen einfach einen höchstwahrscheinlichen Wert aus den Daten, und beim Testen haben wir vorher eine Idee über den Parameter (z.B. behaupten wir, dass \(\lambda=3\) ist), und überprüfen die Plausibilität dieser Behauptung (oder Hypothese) in einem Test.

Vorgehen bei Hypothesentests

Das generelle Vorgehen bei einem Hypothesentest ist für alle Varianten gleich:

  1. Man stellt seine Hypothesen (Null- und Alternativhypothese) auf
  2. Man sucht den für seine Fragestellung passenden Test aus
  3. Man legt das Signifikanzniveau \(\alpha\) fest
  4. Man sammelt seine Daten
  5. Man berechnet mit diesen Daten eine zusammenfassende Kennzahl, die Prüfgröße (oder Teststatistik)
  6. Man bestimmt die Verteilung dieser Prüfgröße
  7. Man berechnet entweder den kritischen Bereich oder den p-Wert
  8. Man prüft anhand des Ergebnisses aus Schritt 6., ob man die Nullhypothese ablehnt oder beibehält.
Klausuraufgaben
Im eBook-Shop gibt es Klausuraufgaben zu diesem Thema!
Zu den eBooks

Einführend wurden diese acht Schritte schon im Artikel „Was sind Hypothesentests?“ erwähnt. Hier werden diese Schritte nochmal etwas detaillierter beschrieben:

1. Hypothesen aufstellen

Zuallererst formuliert man seine Fragestellung, und bringt sie in die Form von zwei Hypothesen. Hier ist wichtig, dass man die Nullhypothese \(H_0\) widerlegen möchte, und nachweisen möchte dass stattdessen die Alternativhypothese, \(H_1\), gilt. Deswegen müssen sich \(H_0\) und \(H_1\) auch widersprechen. Im einführenden Artikel hatten wir schon das Beispiel mit den Maßkrügen. Dort wollten wir nachweisen, dass auf dem Oktoberfest im Durchschnitt zuwenig Bier in die Maßkrüge gefüllt wird. Unsere Hypothesen werden also wie folgt formuliert:

  • \(H_0\): Der durchschnittliche Inhalt eines Maßkruges ist gleich (oder größer) als ein Liter
  • \(H_1\): Der durchschnittliche Inhalt eines Maßkruges ist kleiner als ein Liter

Wichtig, wie gesagt, dass unsere Behauptung die wir nachweisen möchten, in der Alternative \(H_1\) formuliert ist. Der Artikel „Was kommt in \(H_0\) und was in \(H_1\)?“ gibt hier genauer Hilfe.

Stellen wir nun den durchschnittlichen Inhalt eines Maßkruges durch \(\mu\) dar, können wir die Hypothesen kürzer und mathematisch eindeutiger formulieren:

  • \(H_0: \; \mu \geq 1 \text{Ltr.}\)
  • \(H_1: \; \mu < 1 \text{Ltr.}\)

Einseitige und zweiseitige Tests

Es gibt drei mögliche Arten, ein Hypothesenpaar aufzustellen. Sie werden unterteilt in einseitige und in zweiseitige Tests, je nachdem in welche Richtung die Alternativhypothese zielt:

Einen einseitigen Test haben wir gerade eben im Beispiel oben schon gesehen: Wir möchten herausfinden, ob der durchschnittliche Inhalt in einem Maßkrug kleiner ist als ein Liter. Die Alternativhypothese geht also nur auf eine Seite, nämlich in die Richtung „kleiner als ein Liter“. Allgemein sieht das Hypothesenpaar wie folgt aus:

  • \(H_0: \; \mu \geq a\)
  • \(H_1: \; \mu < a\)

Genauso gibt es einseitige Tests in die andere Richtung. Dann lautet die Alternativhypothese, dass der Parameter größer ist als irgendein zuvor festgelegter Wert. Möchte man z.B. Alarm schlagen, wenn die Durchschnittstemperatur irgendwann größer ist als ein bestimmter Wert, dann würde man solch einen Test brauchen. Die Hypothesen lauten dann:

  • \(H_0: \; \mu \leq a\)
  • \(H_1: \; \mu > a\)

Bei einem zweiseitigen Test möchte man nur herausfinden ob ein Parameter anders ist als ein vorher festgelegter Wert – egal ob er nun kleiner oder größer ist. Ein Beispiel wäre ein Test einer Nahrungsmittelfabrik, ob das Füllgewicht in einer Packung konstant den vorgegebenen Wert hält. Man braucht einen Alarm wenn das Gewicht abweicht, egal ob nach oben oder nach unten. Die Hypothesen lauten dann allgemein:

  • \(H_0: \; \mu = a\)
  • \(H_1: \; \mu \neq a\)

Zwischenaufgabe

Man möchte durch einen Test nachweisen, dass Berufseinsteiger mit Masterabschluss im Durchschnitt mehr verdienen als Berufseinsteiger mit einem Bachelorabschluss. Dazu befragt man 100 Berufseinsteiger nach ihrem Abschluss und Einstiegsgehalt.

Wie lautet die Null- bzw. Alternativhypothese in diesem Fall?

Lösung (klick)

Da wir nachweisen wollen, dass Berufseinsteiger mit Masterabschluss ein höheres Einstiegsgehalt haben, muss diese Behauptung in die Alternativhypothese.

\(H_0\): Bachelor- und Masterabsolventen bekommen das gleiche Einstiegsgehalt.

Die Nullhypothese ist das genaue Gegenteil davon. Solange wir keinen Unterschied im Einkommen nachweisen, müssen wir annehmen, dass beide Gruppen dasselbe verdienen:

\(H_1\): Masterabsolventen bekommen ein höheres Einstiegsgehalt als Bachelorabsolventen.

Wenn wir das durchschnittliche Einstiegsgehalt von Bachelorabsolventen mit \(\mu_B\), und das von Masterabsolventen mit \(\mu_M\) bezeichnen, können wir die Hypothesen kürzer formulieren:

\[ H_0: \; \mu_M \leq \mu_B \\ H_1: \; \mu_M > \mu_B \]

2. Test wählen

Um zu entscheiden, welcher Test der passende ist, muss man erst die Null- und Alternativhypothese aufstellen, und das Skalenniveau aller vorkommenden Variablen (Zielgröße, und evtl. Einflussgröße(n)) festlegen. Die Testwahl ist dann z.B. über eine Tabelle möglich, wie ich sie in einem Artikel hier zeige. Im Beispiel mit dem Maßkrug oben haben wir eine normalverteilte Zielgröße, und keine Einflussgröße – laut Tabelle passt hier also der Einstichproben-t-Test.

Nachdem man den passenden Test gewählt hat, ergibt sich später auch automatisch, welche Prüfgröße man berechnen muss, und welche Verteilung sie hat.

3. Signifikanzniveau festlegen

Eine Hypothese kann nie mit absoluter Sicherheit bestätigt bzw. widerlegt werden, sondern immer nur mit einer gewissen Wahrscheinlichkeit. Es kann also immer passieren, dass wir durch Zufall in unserer Stichprobe viele Maßkrüge mit wenig Bier erhalten, und einen Mittelwert von zum Beispiel \(\bar{x}=940\text{ml}\) berechnen. Wir würden also fälschlicherweise „nachweisen“, dass im Mittel zuwenig Bier in die Krüge gefüllt wird, obwohl der echte durchschnittliche Inhalt tatsächlich ein Liter ist.

In statistischer Sprache formuliert heißt das: Wir würden also die Nullhypothese ablehnen, obwohl sie in der Realität wahr ist.

Man muss sich vor Durchführung des Tests auf ein Signifikanzniveau, genannt \(\alpha\), festlegen, das die maximale Wahrscheinlichkeit festlegt, mit der uns so ein Fehler passieren darf. Je sicherer wir mit unserer Entscheidung sein wollen, desto niedriger muss diese Fehlerwahrscheinlichkeit gewählt werden. In den allermeisten Fällen, sowohl in der Praxis als auch in Klausuren, ist dieser Wert festgelegt als \(\alpha = 5\%\).

\(\alpha\)- und \(\beta\)-Fehler

Neben dem Fehler, \(H_0\) abzulehnen obwohl sie wahr ist, gibt es eine weitere Fehlentscheidung, die beim Testen passieren kann: Falls tatsächlich im Mittel zuwenig Bier abgefüllt wird, und unser Test dies nicht nachweisen kann. Dann behalten wir die Nullhypothese (genug Bier) bei, obwohl in Wirklichkeit die Alternativhypothese (zuwenig Bier) wahr ist.

Insgesamt können bei einem Test vier Fälle auftreten:

  1. Wir lehnen \(H_0\) ab, also nehmen \(H_1\) an.
    1. In Wirklichkeit stimmt \(H_0\): Hier lehnen wir \(H_0\) fälschlicherweise ab. Das ist der \(\alpha\)-Fehler, auch Fehler 1. Art genannt. Dieser Fall tritt genau mit einer Wahrscheinlichkeit von \(\alpha\) auf – weil ein Test genau so konstruiert ist. Das Niveau \(\alpha\) regelt also, wie sicher man sich sein kann dass \(H_1\) tatsächlich wahr ist, gegeben man lehnt \(H_0\) auch ab.
    2. In Wirklichkeit stimmt \(H_1\): Alles in Ordnung. \(H_1\) stimmt, und wir nehmen \(H_1\) an.
  2. Wir behalten \(H_0\) bei.
    1. In Wirklichkeit stimmt \(H_0\): Alles in Ordnung. \(H_0\) stimmt, und wir glauben nicht an \(H_1\).
    2. In Wirklichkeit stimmt \(H_1\): In diesem Fall ist unsere Vermutung wahr (d.h. \(H_1\), die wir ja nachweisen möchten, stimmt), aber durch den Test konnte sie nicht bestätigt werden, da wir \(H_0\) beibehalten. Dies ist der sogenannte \(\beta\)-Fehler, auch Fehler 2. Art genannt. Diese Wahrscheinlichkeit können wir nicht kontrollieren, sie ist abhängig von der Art des Tests und des Signifikanzniveaus \(\alpha\).

4. Daten sammeln

Als nächstes erhebt man Daten. Das muss man in einer Klausur natürlich nicht machen, aber in realen Situationen ist die Datenerhebung meist der zeitaufwändigste Schritt.

In unserem Beispiel würden wir aufs Oktoberfest gehen, z.B. zehn Maß Bier bestellen, und deren Inhalt abmessen. Die Ergebnisse könnten so aussehen:

Krug \(x_i\) 1 2 3 4 5 6 7 8 9 10
Inhalt 968ml 1001ml 987ml 995ml 1010ml 983ml 994ml 962ml 979ml 965ml

5. Prüfgröße berechnen

Nun werden die Daten ausgewertet, und zwar unter der Annahme, dass \(H_0\) gilt, also alles in Ordnung ist, d.h. der durchnittliche Inhalt eines Maßkrugs tatsächlich ein Liter ist.

Um später eine Testentscheidung treffen zu können, muss man aus den Daten eine Kennzahl berechnen, deren Verteilung man kennt (und die in Klausuren meist als Verteilungstabelle in einer Formelsammlung angehängt ist).

Der Test in unserem Fall funktioniert von der Idee her wie folgt: Wir berechnen den durchschnittlichen Inhalt der erhobenen (hihi) Maßkrüge. Dieser ist bei uns \(\bar{x} = 984.4\text{ml}\).

Die Frage, die der Test beantwortet, ist nun: „Angenommen der wahre Durchschnittsinhalt liegt bei 1000ml, ist dieses Ergebnis von 984.4ml noch plausibel genug, dass es durch Zufallsschwankung entstanden sein kann, oder ist es so unplausibel, dass der wahre Mittelwert nicht bei 1000ml, sondern niedriger liegt?“

Wir könnten jetzt natürlich subjektiv sein und sagen: „984ml ist schon niedrig – da ist der Mittelwert bestimmt nicht bei 1000ml.“ Aber das ist keine klare Entscheidungsregel. Was würden wir bei einem Mittelwert von 985ml sagen? Bei 990ml? Bei 995ml?

Der Test verpackt diese Frage nun in eine mathematische Formel und eine Entscheidungsregel. Es wird dazu eine Prüfgröße (oder Teststatistik) berechnet, die in diesem Fall eine standardisierte Version des Mittelwerts \(\bar{x}\) ist:

\[ T = \sqrt{n} \frac{\bar{x} – \mu_0}{s} \]

Die ganzen Standardisierungen in dieser Formel sind dazu da, dass dem Test egal ist,

  • wie groß die Stichprobe ist (da mit \(\sqrt{n}\) multipliziert wird),
  • welchen Mittelwert wir als Nullhypothese festgelegt haben (da die 1000ml, also \(\mu_0\), wieder abgezogen werden),
  • welche Streuung die Daten aufweisen (da wir durch die Standardabweichung der Stichprobe, \(s\) teilen).

In unserem Beispiel bestimmen wir \(\bar{x} = 984.4\text{ml}\) und \(s= 16.057\). Den Wert \(\mu_0=1000\) nehmen wir aus der Nullhypothese. Unsere Prüfgröße \(Z\) ist somit

\[ T = \sqrt{n} \frac{\bar{x} – \mu_0}{s} = \sqrt{10} \frac{984.4 – 1000}{16.057} = -3.072\]

6. Verteilung der Prüfgröße bestimmen

Um bestimmen zu können, welche Werte für die Prüfgröße „normal“, also noch akzeptabel sind, muss man wissen, welche Verteilung diese Prüfgröße hat. Die Prüfgröße bei einem Binomialtest hat z.B. die Verteilung \(B(n,p)\), also eine Binomialverteilung mit n = „Anzahl der Beobachtungen“ und p = „Wahrscheinlichkeit in der Nullhypothese“. Bei einem t-Test hat die Prüfgröße dann eine \(t(n-1)\)-Verteilung, d.h. eine t-Verteilung mit \(n-1\) Freiheitsgraden.

Ein Test ist meistens so konzipiert, dass die Verteilung „einfach ist“, z.B. eine Normalverteilung mit Mittelwert 0 und Standardabweichung 1. Der Grund dafür ist, dass es dann reicht, in Büchern, Klausuren usw. nur eine Tabelle für die Normalverteilung abzubilden, nämlich die mit Mittelwert 0 und Standardabweichung 1.

Und diese Tatsache ist übrigens auch der Grund dafür, warum wir die Prüfgröße etwas umständlicher berechnen. Wir könnten als Prüfgröße ja einfach den Mittelwert der Daten nehmen. Stattdessen standardisieren wir ihn, indem wir \(\mu_0\) abziehen und durch \(s\) teilen. Der Vorteil dieser Variante ist nun, wie gerade beschrieben, dass die Prüfgröße in eine Verteilung „gezwängt“ wird, für die wir eine Tabelle vorhanden haben.

7. Test abschließen: Zwei Möglichkeiten

Nun gibt es zwei Möglichkeiten, die Frage zu beantworten, ob unser Mittelwert noch plausibel ist oder nicht:

Test abschließen: Über den kritischen Bereich (meist mit Hilfe einer Verteilungstabelle in Klausuren)

Bei der ersten Möglichkeit, die Testentscheidung zu treffen, bestimmen wir einen kritischen Bereich. Wenn unsere Prüfgröße dann nicht in diesem kritischen Bereich liegt, nehmen wir die Maßkrüge als korrekt befüllt an. Wenn die Prüfgröße aber in dem kritischen Bereich liegt, haben wir einen Nachweis dafür, dass in Wirklichkeit weniger als 1000ml in einen Maßkrug gefüllt werden.

Der kritische Bereich ist ein fester Bereich für eine bestimmte Testart, der, im Falle dass \(H_0\) gilt, von der Prüfgröße nur sehr selten (nämlich mit einer Wahrscheinlichkeit von \(\alpha\)) erreicht wird. Falls die Prüfgröße nun doch in diesem kritischen Bereich liegt, haben wir einen starken Grund, eher an \(H_1\) zu glauben.

Bei einem einseitigen Test liegt dieser Bereich nur auf einer Seite, es gibt eine Schranke, und je nach Testrichtung wird geschaut, ob die Prüfgröße über oder unter dieser Schranke liegt. Bei einem zweiseitigen Test besteht der kritische Bereich aus zwei Gebieten, es gibt also zwei Schranken, je eine links und rechts, und es wird geschaut, ob die Prüfgröße innerhalb der zwei Schranken liegt, oder (in irgendeine Richtung) außerhalb.

Man kann die kritische Schranke recht problemlos an einer Verteilungstabelle ablesen. So hat man das früher, vor dem Computerzeitalter gemacht, und so macht man es in Klausuren auch immernoch. In der Praxis ist es aber inzwischen verbreiteter, mit p-Werten zu arbeiten:

Test abschließen: Über den p-Wert (meist in Statistikprogrammen)

Alternativ können wir aus der Prüfgröße auch einen p-Wert berechnen. Dieser Wert sagt uns, wie wahrscheinlich es ist, unter Annahme einer korrekten Befüllung von durchschnittlich 1000ml eine so extreme Abweichung vom Mittelwert \(\mu_0=1000\text{ml}\) zu erhalten.

Wenn diese Wahrscheinlichkeit nun sehr gering ist (genauer: Wenn sie unter dem festgelegten Signifikanzniveau \(\alpha\) liegt), hat man wieder einen Nachweis dafür, dass in Wirklichkeit weniger als 1000ml in einen Maßkrug gefüllt werden. Liegt der p-Wert aber darüber, konnte man das nicht nachweisen und behält die Nullhypothese bei.

8. Testentscheidung treffen

Nun hat man alle Werte berechnet, um seine Testentscheidung treffen zu können. Falls man sich in Schritt 7. für den kritischen Bereich entschieden hat, betrachten wir zwei Werte: die Prüfgröße und den kritischen Bereich. Man sieht einfach nach, ob die Prüfgröße innerhalb oder außerhalb dieses Bereichs liegt. Liegt sie außerhalb, dann ist „alles in Ordnung“, also behalten wir die Nullhypothese, aber liegt sie innerhalb des kritischen Bereichs, dann haben wir genug Hinweise dafür gefunden, um die Alternativhypothese annehmen zu können.

Wenn man sich in Schritt 6. für den p-Wert entschieden hat, ist der letzte Schritt etwas einfacher: Man betrachtet zwei andere Werte: den p-Wert sowie das Signifikanzniveau \(\alpha\). Liegt der p-Wert über dem Signifikanzniveau \(\alpha\), behalten wir die Nullhypothese, aber falls der p-Wert kleiner ist als \(\alpha\), haben wir genug Hinweise dafür gefunden, um die Alternativhypothese annehmen zu können.

Was sind Hypothesentests?

Hypothesentests führt man immer dann durch, wenn man irgendetwas mit Hilfe von erhobenen Daten nachweisen möchte, zum Beispiel dass auf dem Oktoberfest die Maßkrüge nicht ganz vollgemacht werden. Der Grundsatz bei allen statistischen Tests ist hierbei, dass wir das Gegenteil widerlegen müssen – wir müssen also widerlegen, dass der Maßkrug tatsächlich mit einem Liter gefüllt ist.

Klausuraufgaben
Im eBook-Shop gibt es Klausuraufgaben zu diesem Thema!
Zu den eBooks

Um den Grund für dieses Vorgehen zu verstehen, kann man sich eine Gerichtsverhandlung vorstellen, und Parallelen zum Ablauf eines Tests ziehen: Man geht davon aus, dass der Angeklagte unschuldig ist (ohne es genau zu wissen). Bevor man von der Schuld des Angeklagten überzeugt sein kann, muss man ausreichend Beweise gesammelt haben, um zweifelsfrei an die Schuldigkeit glauben zu können. Falls das nicht der Fall ist, muss man davon ausgehen, dass er unschuldig ist. Man könnte diesen Sachverhalt auch in statistischen Hypothesen formulieren:

  • \(H_0\): Der Angeklagte ist unschuldig
  • \(H_1\): Der Angeklagte ist schuldig

Wie läuft ein Test ab?

Jeder Test besteht aus den folgenden acht Schritten:

  1. Hypothesen aufstellen:
    Zuallererst formuliert man seine Fragestellung in ein Hypothesenpaar um, und zwar eine Nullhypothese und eine Alternativhypothese. Man geht davon aus, dass die Nullhypothese gilt, außer man findet durch die Daten einen starken Hinweis, dass stattdessen die Alternativhypothese wahr ist.
    In diesem Schritt definiert man bereits das Skalenniveau seiner Zielgröße (also z.B. nominal- oder intervallskaliert) und eventuell vorhandener Einflussgrößen.
  2. Test wählen:
    Mit den in Schritt 1 bestimmten Informationen kann man sich jetzt für den für seine Fragestellung richtigen Test entscheiden. Dazu gibt es hier einen Artikel, in dem abhängig von den Skalenniveaus von Zielgröße und Einflussgröße der passende Test vorgeschlagen wird.
  3. Signifikanzniveau festlegen:
    Man sollte das Signifikanzniveau festlegen, bevor man mit der Analyse beginnt. Es beschreibt die Wahrscheinlichkeit, einen bestimmten Fehler zu machen, nämlich die Nullhypothese abzulehnen, wenn sie in Wirklichkeit doch gilt.
    In einer Klausur ist das Signifikanzniveau meist vorgegeben, und in der Praxis hat sich der Wert 5% dafür eingebürgert.
  4. Daten sammeln:
    Dann sammelt man Daten, also erhebt eine Stichprobe. In Übungen und Klausuren ist das meist schon passiert. Man muss beachten, dass man die Daten in dem Skalenniveau misst, das in Schritt 1. festgelegt wurde.
  5. Prüfgröße berechnen:
    Aus den Daten berechnet man nun eine Prüfgröße, auch Teststatistik genannt. Die gesamte Stichprobe wird also in eine einzige Zahl zusammengefasst. Das ist beim klassischen Gaußtest zum Beispiel der Mittelwert der Daten (der mit einigen Faktoren standardisiert wird). Bei manchen anderen Tests ist die Berechnung der Prüfgröße ein wenig aufwändiger, aber die Idee ist überall dieselbe: Man fasst die Daten mit einer Formel in eine Prüfgröße zusammen, die einer bestimmten Verteilung folgt.
  6. Verteilung der Prüfgröße bestimmen:
    Nun bestimmt man die Verteilung der Prüfgröße. Die Kernidee beim Testen ist nämlich, dass diese Prüfgröße, falls die Nullhypothese gilt, eine bestimmte Verteilung hat. Wenn wir diese Verteilung bestimmen, können wir nachsehen ob die Prüfgröße für unsere spezielle Stichprobe dort „gut genug“ reinpasst, was für die Nullhypothese sprechen würde, oder eben nicht gut reinpasst, was dann ein starkes Indiz für die Alternativhypothese ist.
  7. Kritischen Bereich oder p-Wert berechnen:
    Ein Test ist nun nichts weiteres als eine mathematische Regel, um zu entscheiden, ob diese Prüfgröße eher auf die Null- oder die Alternativhypothese schließen lässt. Bei der einfachsten Variante bestimmt man einfach einen kritischen Bereich für die Prüfgröße – wenn die Prüfgröße in diesem kritischen Bereich liegt, dann lehnen wir die Nullhypothese ab. Alternativ kann man aus der Prüfgröße auch einen p-Wert berechnen, und dann nachsehen ob er unter oder über dem gewählten Signifikanzniveau liegt.
  8. Testentscheidung treffen:
    Zuletzt treffen wir die Testentscheidung: Wenn der Wert im kritischen Bereich liegt, haben wir einen Nachweis gefunden, dass die Alternativhypothese stimmt. Wenn der Wert der Prüfgröße aber außerhalb dieses kritischen Bereichs liegt, können wir keine sichere Aussage treffen.

Welche Arten von Tests gibt es?

Die klassischen Tests behandeln Mittelwerte. Sie fragen also, ob der Mittelwert eines gemessenen Merkmals größer (oder kleiner) als ein bestimmter, für uns wichtiger, Wert ist. Das wäre bei dem Maßkrug der Fall, wo wir wissen wollen ob der Inhalt des Kruges gleich einem Liter ist, oder ob weniger als ein Liter abgefüllt wird.

Andere Tests überprüfen, ob sich zwei Merkmale gegenseitig beeinflussen, oder ob sie unabhängig sind. Zum Beispiel könnte man sich dafür interessieren, ob bei einer Wahl Männer und Frauen ein unterschiedliches Wahlverhalten haben. Dann würde man testen, ob die Variable „Geschlecht“ und die Variable „gewählte Partei“ voneinander unabhängig sind.

Als letztes Beispiel sei die Regression genannt, in der wir Regressionsparameter (die meist \(\beta\) genannt werden) erhalten, die uns den Einfluss einer Variablen auf eine andere beschreiben. Hier möchte man testen, ob der Wert von \(\beta\) ungleich 0 ist, was nämlich belegt, dass ein Einfluss vorhanden ist.